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Recently, therehave been severalapplicationsof differential and algebraictopology
to problemsconcernedwith the global structureof spacetimes.In this paper,we derive
obstructionsto the existenceof spin-Lorentzandpin-Lorentz cobordismsandwe show
that for compactspacetimeswith non-emptyboundarythere is no relationshipbetween
the homotopytype of theLorentzmetric andthe causalstructure.We also point out that
spin-Lorentzandtetradcobordismsareequivalent.Furthermore,becausethe originalwork
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1. Definitions andconventions

In thispaper,by theword“spacetime”weshallmeanafour-dimensionalman-
ifold M, connectedandsmooth (thoughnot necessarilyorientable),possessing
aneverywherenon-singularLorentzmetric gab.

The existenceof aneverywherenon-singularLorentzmetric on atime-orient-
able M is equivalentto the existenceof a global non-vanishingvector field
v. To see this, recall thatthe underlyingRiemannianmanifoldM possessesa
Riemannianmetric, g~.Given a vector field v, one can definethe Lorentz
metric,gab, in termsof the Riemannianmetric andv via the relation

R -, ,iRab
~ab = gab — ~.VaVbf kg~~vV

Theconversefollows by diagonalisingthe given Lorentzmetric into “Rieman-
nian metric” and (negativeeigenvalue)“eigenvector”parts,anddefiningv to
be thevectorwith negativeeigenvalue(see [I] or [2]).
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We assume*l (for the timebeing) thatour spacetimesaretime-orientable,
i.e. that wecanmakea globally consistentchoicefor the sign of v (onecannot
propagateV aroundsomeclosedloop in M andendup with — v).

Broadly speaking,the kink numberis an integerwhich classifiesmetricsup
to homotopy. To makethis more precise,let (M, gab) be a spacetimeand
1cM athree-dimensional,connected,orientablesubmanifold.Since1 is three-
dimensionalandoriented,we canalwaysfind aglobalframing {u1: i = 1,2, 3}
of I togetherwith aunit normal,n, to I. We canthenextendthistetradframing
(n,u) of I to a collar neighbourhood

N~Ix [0,1].

(We extendto N to dealwith the caseI ~ 3M). Let v be the unit timelike
vectordeterminedby gab;thenv canbewritten

v = v
0n + v’u

1 (2)

such that ~, (V’)

2 = 1. Clearly, then,v determinesa mapK : I —* S3, by
assigningto eachpointp E I thedirection in T~M(apointon theS3 determined
by thetetrad (n,u)) thatV~pointsto, i.e., asvisualisedin fig. 1. Thenorth pole
of S3 is givenby n. Wethendefinethe kink numberof ~ab with respectto I as

kink(I;ga~)= deg(K) (3)

wheredeg(K) is “the degreeof the mappingK”.

Convention 1.If v is a timelike vector determinedby gab,we shalloften write

kink(I;g~~)= kink(1;v).

Now, for ourimmediatepurposesweshallbeconcernedwith kinking with re-
spectto 3M, theboundaryof ourspacetime.In particular,weshallbeconcerned
with the caseM compact,with

3M~I
0uI1u~• UI,, (4)

wherethe I,’s arenowclosed,connected,orientedthree-manifoldsandU is the
operationof disjoint union.We wishto definethequantitykink(3M; gab).On
differential topologicalgrounds(see [3]) we seethat it makessenseto write

kink(3M;g~~)= ~ kink(I,;g~) (5)

oncewe havedecidedon someconventionfor choosingthe sign of n~(the unit
normal to eachI) consistently.Our conventionis simply that n1 is always

*1 Note: It is not necessary(generally)to assumetime-orientability;we could still define anotion

of kinking for non-orientableM.
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P V -~

Fig. 1. The three-sphereis the setof directions(at apoint) in the four-manifold.

pointingout of M. Havingestablishedthis, we cannow discussthe conceptof
cobordism.First, however,werecall the following

Definition 2. LetM beanorientedandtime-orientablespacetime,with orthonor-
mal framebundle0(M) aprincipalbundlewith structuregroup50(1,3)~.We
saythatM hasSL(2,C) -spin structureif thereexistsa principalbundle~ (M)
(with structuregroupSpin(l,3)~~ SL(2,C)) whichisa2—1 coveringof0(M),
so thatthe following diagramcommutes:

SL(2,C) ~ Spin(l,3)o —f 0(M) —* M
~ identity

S0(l,3)~ —f 0(M) —+ M

We shall call suchanM aspin-Lorentzmanifold.
Now, supposewearegivena collectionof three-dimensional,connected,on-

entable,closedmanifoldsI~,12, ..., 1~.We saythatthereis aspin-Lorentzcobor-
dismfor {L’1: I = 1,..., n} if thereexistsa spin-LorentzmanifoldM satisfying

0M~I1U12U... UI,,

We havethe related

Definition 3.Let M be asmooth,four-dimensionalRiemannianmanifold. We
say thatM is parallelisableif thereexistsa global non-vanishingtetrad field,
{e~},on M.
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Let I~,..., I,, be a collection of three-manifoldsas above.We saythat there
is a tetrad cobordismfor {I, : i = 1, ..., n} iff there exists a parallelisable
four-manifoldM suchthat

0M~I1UI2U...UI~.

Moregenerally,wecanconsiderthe problemof finding cobordismsadmitting
othertypes of structures;the studyof this problem, in the generalsetting,has
beenextensivelydeveloped(see[4]). Note, finally, thatit is not necessaryfor a
spacetimeM to betime-orientablein orderto “mimic” the aboveconstructions
in asensibleway. Fornon-time-orientableM westill havea notionofkinking#

2
(definednowasthe degreeof the mapfrom I to I~P3)andwestill haveanotion
of “pinors”, definedthus:

Definition 4. Let M beanon-onientablespacetime,with orthonormalframebun-
dle 0(M) a principalbundlewith structuregroup0 (p,q). We saythatM has
pin-Lorentzstructureiff thereexists a principal bundle0(M) (with structure
groupPin(p, q)) whichis a2—1 coveringof 0(M), sothatthefollowing diagram
commutes:

Pin(p,q) —* 0(M) —p M
J. identity

0(p,q) —~ 0(M) —* M
whereeither (i)p = l,q = 3,or (ii)p = 3,q = 1.

As weshall see,thetopologicalobstructionto pin-Lorentzstructureis relatedto
thatof spin-Lorentzstructure.

2. Equivalence of tetrad and spin-Lorentz cobordism

One of the first questionsthat comesto mind is whetheror not thereis any
connectionbetweentetrad andspin-Lorentzcobordism.That thereshouldbe
somerelationisimpliedby atheoremofGeroch[5]. Onesimpleapproachto this
questionwould be to calculatethe topologicalobstructionto tetradcobordism
andcompareit to the obstructionto spin-Lorentzcobordism.However, thisis
not necessarybecausewe havethe following

Theorem 5 (HirzebruchandHopf [61). Let M bea smooth,compact,orientable
four-manifold.ThenM isparallelisableiffpi(M) = 0,e(M) = 0, andw

2(M)

~2 Likewise, the existenceof a globally non-singularLorentz metric on a non-time-orientable
spacetimeis now equivalentto the existenceof a globalnon-vanishingline field {v, —v}.
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= 0, wherePi (M) is thefirst Pontryaginnumber,e(M) is theEuler number,
andw2(M) is thesecondStiefel—Whitneyclass.

Now, whenM hasnon-trivialboundary3M ~ Ii U 12 U ... U I,, ~ 0, w2(M)
is definedas usual,but the relationshipbetwene(M) andthe zerosof smooth
vectorfieldson M changes[31.That is, if v is asmoothvectorfield on M, and
~ i~denotes“the sumof theindicesof V”, thene(M) is given by

~ i~= e(M) + kink(OM;V) (6)

Furthermore,for a manifold with non-emptyboundary(of disjoint closed,
onentablethree-manifolds)we automaticallyhave

p1(M) = 0.

Thus,amendingthe abovetheoremto dealwith the casewhen3M ~ 0, we
obtain

Corollary6. LetM beasmooth,compactorientablefour-manifoldwithnon-empty
boundary

3M~I1UI2U.~.UI,,~O.

ThenM is parallelisablebya tetradfield {Vt : i = 1, ...4} iffw2 (M) = 0 and
~Ii7~= 0,for anyvectorv~in the tetrad.

Now, noticethat if v is a timelike vectorfield on M with respectto a Lorentz

metric gab,thenthe metric is globally non-singularif

‘a = 0.

Furthermore,M admitsaspin structureif w2 (M) = 0. Thus,the obstructions
to (M, ‘ab) beinga spin-Lorentzmanifold arepreciselythe obstructionsto M
beingparallelisable,andso spin-Lorentzandtetradcobordismareequivalent.

3. Derivation of the obstructionto spin-Lorentzcobordism

Sincewe areconcernedwith the obstructionto spin-Lorentzcobordism,it is
usefulto first reviewthe secondStiefel—Whitneyclassw2(M) (the obstruction
to spin structureon M).

Hence,supposewe aregivena four-dimensionalorientablemanifoldM with
tangentbundleTM. Giventhe 2—1 coveringmap

p: Spin(4) —k S0(4)

we candefine, for transitionfunction hab E S0(4),the lifting has, E Spin(4),
satisfying

P(hab) = hab, hab = hab’.
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By local triviality, suchalifting canalwaysbe found (locally).
Becausep is ahomomorphism,andusingthe compatibilitycondition, we see

that
p (

1~abhb~hca) = hab hb~hca = Id,
where Idis identity map on (Ia fl Ub fl U~c M (U~sare opensets).Thus,
hab hbc hca is in the kernel of p~however,there is a sign ambiguity in the
kernel:

ker = { ±Id}. (7)

However, for the hab’S to definea global spin bundleover M, they mustalso
satisfythe compatibilitycondition

‘tab ~u1bchca = Id (8)

Hence,define the Cech2-cochain

w
2(M) w~(M;U~,U1, Uk): U~n U~n Uk —~ 17

via the relation
hab hbc hca = w2(M) Id (9)

(where~2 hereis multiplicative).Thenw2 (M) E H
2 (M; 12) iscalledthesecond

Stiefel— Whitney class.
TakingZ

2 to be additivewehavethe easy

Lemma7. LetM be asabove. Thenthereexistsa spin bundleover M iff

w2(M) = 0.

Clearly, if MadmitsSpin(4) spinstructureandM is Lorentz,thenMadmits
SL(2, C) spin structureandis a spin-Lorentzmanifold.

To seehow wecanobtaina topologicalobstructionto spin-Lorentzstructure
on M, whichdependsonly onboundarydatadefinedon 3M, recallthefollowing

Lemma8 (Milnor andKervaire [7], p. 517).Let M be an orien table, smooth
manifoldofdimension4. Let u(3M) (the mod2 Kervaire se~nicharacteristic)be
givenby

u(3M) = dim12(Ho(3M;Z2) ~ H,(3M;7L2))mod 2

Then the rank of the intersection pairing h : H2(M;7L2) x H2(M;12) —# Z2
satisfies rank(h) = (u(0M) + e(M))mod2.

To see how the lemmarelatesto spin-Lorentzstructure,recall [81 that the

rankof theintersectionpairingalsosatisfies

(rank(h)) mod2 = 0 ~ w2(M) = 0 (10)

Combiningeq. (10) with the abovelemma,we obtain
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Theorem9. Let 11,12, ..., I~bea collectionofclosed,orientablethree-manifolds.
Thenthereexistsa spin-Lorentzcobordism,M, for I~,1~,..., I,, if andonly if

(u(ÔM) + kink(t9M;V))mod2=0, (11)

whereu(3M) is asabove,andV ~5the timelikevectordeterminedby the metric
on M.

Proof Supposesucha spin-Lorentzcobordism,M, exists.ThenM admitsspin
structureandso w2(M) = 0; by eq. (10), (rank(h)) mod 2 = 0. Hence
(u(3M) + e(M)) mod 2 = 0, by the lemma.

Furthermore,sinceM is aLorentzmanifold with timelike vectorV we must
have ~ i~,= 0 (sinceV mustnot vanish);hence,by eq. (6)

—e(M) = kink(0M;’v)

andso, modulo2, weobtain

(u(3M) + kink(i9M;V)) mod 2 = 0.

Conversely,supposethat no such spin-Lorentzcobordismexists. Then any
cobordismM is oneof threethings:spin but not Lorentz,Lorentzbut not spin,
or neitherspin norLorentz.

If M is spin but not Lorentz, then w2(M) = rank(h) mod2 = 0 and
~ ~v ~ 0. If > ~v is even,thenwe could takethe connectedsumof M with a
finite numberof spinmanifolds (ofevenEulernumber)to obtaina spincobor-
dism M’ with ~ i~= 0 [1]. However, suchan M’ would be aspin-Lorentz
cobordism,contradictingour assumption.Thus, > i,~mustbe oddandsowe
get

(u(3M) + kink(OM;V)) mod2 =

Likewise, if M is Lorentz but not spin, then ~ i~,= 0 and w2(M) =

(rank(h)) mod 2 = land so
(u(OM) + kink(3M;V)) mod2 = 1.

Finally, if M is neitherspin nor Lorentz, then~ 4, ~ 0 and w2 (M) =

(rank(h))mod2 = 1. If> ~viseven,then(u(ÔM) + kink(0M;V)) mod2 =

1. Thus,supposethat~ i.,, is odd.RecallthatalthoughM is not spin, we canal-
waysfind [9] a sphericalmodificationofM, M’, whichisspin (aspincobordism
alwaysexists).However,suchacobordismwouldsatisfye(M’) ~ e(M) mod 2.
Thus,if V’ is the vectorfield v extendedto M’, wehavethat~ 4,’ is even.How-
ever,M’ is thena spinmanifoldwith >i,,’ anevennumber.This casewasdealt
with above,andwe sawthat

(u(0M) + kink(5M;V)) mod2 = 1.

This exhaustsall possibilities.
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Using section2 weobtain

Corollary 10.Let 1,, 12, ..., I,, be a collection ofclosed, orientable three-mani-
folds. Thenthereexistsa tetradcobordismM, withglobal tetradfield {v1,v2, v3,
V4}, if andonly if

(u(3M) + kink(0M;v1))mod2=0

forany v1 in thetetradfield.

Thus,weseethatspin-Lorentzandtetradcobordismsbetweenarbitrarythree-
manifoldsalwaysexist, aslongaswe allow for arbitrarykink number(boundary
data).

4. Discussionof Clifford algebras

Beforediscussingpin structureson non-orientablespacetimes,it is usefulto
reviewthe Clifford algebraswhich give rise to the “Cliffordian Pin ~

andto discusssomeof the subtletiesassociatedwith thesegroups.
Thus, let (M, gab) be any spacetime(not necessarilyorientable).Then the

tangentbundleof M, TM, can always be reducedto a bundle with structure
group 0(3, 1) (for signature(— + + +)) or 0(1,3) (for signature(+ — —

(actually0(3, 1) 0(1,3),but as we shall seeit is importantthatwe keepthe
distinctionbetweenthe signatureswhenwe passto the doublecoversof these
groups).Now, we associateto the tangentspaceof (M, gab), at somep E M,
the “Clifford algebra”,Cl (T~(M), gab), which canbedescribedas follows.

Let {ei,e2,e3,e4}be an orthonormalbasis (with respectto gab) for T~,(M).
ThenCl (T~(M), gab) is the algebrageneratedby {e11 i = 1, ..., 4}, subjectto the
following relation:

e~e1+ e1e~= 2g(e,,e1)
Now, associatedto any Clifford algebraCl (p, q) is the group of invertible

elements,C4(p, q). Let P (p, q) c CL (p, q) bethe subgroupgeneratedby non-
null vectorsV e T~,(M) (i.e., g~~v”V

1’~ 0). Then Pin(p,q) C P(p,q) is the
subgroupgeneratedby elementsV e T~,(M)with g~~v’~v1’= ±1.Thus, any
elementx E Pin(p,q) canbewritten as someproduct:x = v

1v2 v,,, where
all theVi’S areunit spacelikeor timelike vectors.But we know that the groups
Pin(p,q) aredoublecoversof the groups0 (p, q), andso in somesensethe pin
groupsmust“re-express”all of the informationcontainedin the Lorentzgroup

~ Note:Thereareother2—1 coversof O(p, q) whichdo not arisefromanyClifford algebra.These
give us “non-Cliffordian” pin structures.The obstructionsto non-Cliffordian pin structures
have been workedout elsewhere[101. See [11 1 for an excellentdiscussionof the different
pin groups.



A. Chamblin / Someapplicationsof differentialtopology in generalrelativity 365

[in fact, theymust “re-express”the informationin a“simply connected”way,
sinceir1(0(p,q)) ~ 12 andir1(Pin(p,q)) 0]. In fact, we seehowelementsof
the pin groupsrepresentLorentztransformationswhenwe recall the following

Fact 11.Any elementof 0(p,q) can be representedasa product ofreflections
acrossafinite numberof(non-null)planesthroughtheorigin 0 e T~(M).

Thus,let x = VIV2. V~be anyelementof Pin(p,q). Foreachvector v1, let
Vj~-denotetheplaneperpendicularto v1. Then,for anyelementw E T~(M), the
reflectionof w aboutV,~-is given as

w —f w — 2(w . V1)V1

Hence,we canview v1V2~ V,, E Pin(p,q) as a seriesof reflectionsaboutthe
planes~ .. ,Vj

1-, i.e., v,V
2’ V,, hasanaturalinterpretationas aLorentz

transformation.
Furthermore,we see that to everyLorentz transformationtherecorrespond

two distinct elementsof Pin(p,q). Forexample,if T E O(p,q) representstime
reversal,ande1 is the (basis)unit timelike vector, thenboth e1 and—e1 corre-
spondto T. And so on.

In the nextsection,we shall concentrateon the cobordismproblemfor Clif-
fordianpin bundles,i.e., bundleswhosestructuregroupcan be obtainedfrom a
Clifford algebra(in theway describedabove).We note,however,thatthecobor-
dism problemfor non-Cliffordianpin structureshasbeenworkedout elsewhere
[10].

Indeed,theseresultscanperhapsbe takenas furtherevidencethat thereis
no immediatereasonwhyweshouldinsist thatourunderlyingspacetimeman-
ifold be orientable;we cando fermionicphysicson non-orientablespacetimes
usingpin bundles(see[12,13], andin particular [14]). This point is especially
relevantif wetakethe“spacetimefoam” pictureseriously,sincethereis no apri-
ori reasonwhy natureshouldpreferorientablefluctuationsover non-orientable
fluctuations.

5. Derivation of the obstructions to Cliffordian pin-Lorentz cobordism

In order to applythe abovelemmaof Milnor andKervaireto the derivation
of obstructionsto pin-Lorentzstructure,we first mustderivesomeidentitiesfor
the Stiefel—Whitneyclassesw1 (M) and w2(M) whenM is non-orientable,i.e.,
when w1(M) = 1.

First, recall Wu’s formula

Wk(M) = ~ Sq’(V3) (12)
i+j=k
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whereSq’ is the Steenrodsquaringoperation [15], and v1 E H~(M) is the
uniqueelementwhich satisfies

(v1~x)[w]=Sq~(x)[w],VxEH~’(M) (13)

where‘S— denotescupproduct,andw e H4(M) is the fundamentalhomology
class [151. Using eqs. (12) and (13), togetherwith the axiomsfor Steenrod
squaring[15], we obtain:

w1(M) = (14)

w2(M) = Sq°(v2) + Sq’(v,) + Sq
2(v

0)

= V2 + V1 ‘~-~V1

V2 + w1~—~w1 (15)

Thus,let x2 e H
2 (M; 12) be any 2-cochain,then

w
2(M) x2 = v2 x2 + (w1 w1) x2

andsinceV2 ~— x2 = x2 ~— x2, we get

w2(M) x2 = x2 x2 + (w1 w1) x2 (16)

Now, recallthe definition of “intersectionpairing” betweentwo cyclesx, y e
H2(M; Z2). First,let x2 andY2 bethe 2-cochainsassociatedwith x andy,defined
via

~ W = x

Y2 w = y (17)

where.—~ denotescapproduct.Thenwedefinetheintersectionpairing,h : H2 (M;
12) x H2 (M; 12) —p l~,via the relation

h(x,y) = x y = (x2 Y2) w.

Now, the questionis: How doesthe parity of the rank of h relate to w2(M)
andw1 (M)? To seethe answer,supposerank(h) was even.Thenevery cycle
x E H2(M) would haveto haveself-intersectionnumberzero, i.e.,

x.x=0 VxeH2(M;Z2) =~

x . x = (x2 x2) w = 0, V x2 E H
2 (M; 12) ~

((w
2(M) x2) — [w1 w1 I x2) w = 0 ~

w2(M)—w,~—’w, =0 (18)

Conversely,if rank(h) was odd, then~ x E H2(M; 12) suchthat x . x ~ 0, and
so

w2(M)—w1~—-w1~0 (19)

Combining(18) and (19),we obtain

w2(M) + w1 ~— = 0 ‘~=~~‘ rank(h) = 0 mod 2 (20)
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Combining(20) with the lemmaof Milnor andKervaire (which still holds,
sinceeverythingis in 12 coefficients),we get

(u(t9M) + kink(8M;g~~))mod2 = 0 ~ (w2(M) + Wi ~— w1) = 0 (21)

wherekink(5M; V) is, again,the degreeof the total map3M —~ lW
3 (orS3 if

M is time-orientable)definedby V.

We arenowin positionto deriveourtopologicalobstructions(which depend
only upon boundarydata, choiceof orientation,choice of signature,andbe-
haviourof 1-cocyclesunderthe cupproduct)usingresultsof Karoubi [161.We
thereforebeginby dividing thepossiblecasesaccordingto signature.

Case 1 (signature (— + + +)). In the casewhen the signatureis (— + + +)
we get the following result:

First recallthat the tangentbundleTM decomposesinto adirect sumof sub-
bundles,

TM ~ T+ ~

wherer~is the “spacelikesubbundle”andr is the “timelike subbundle”(the
termsrefer to the behaviourof sectionsof thesebundleswith respectto the
Lorentzmetric gab).

By elementaryaxioms [151we have

W1(TM) = wi(T+) + w
1(r)

W2(TM) = w2(T~)+ w2(r) + w1(r~)~ w~(f) (22)

We shalloften usethe abbreviationsw1 (r+) = wj~,w1(T)= wj, w2(t+) =

w~,etc.
Now, it is a theoremof Karoubi [16] thatthereis Pin(3, 1) structureon M

if andonly if the following equationholds:

w~+ w~+ w~‘— w~+ w~ wj~= 0 (23)

Combiningeqs. (22) and (23), we thus see thatM hasPin(3,1) structureif
andonly if

w2(M) = W2(TM) = ~— (24)
Combiningeqs. (21), (22),and (24) we thenhave

Theorem 12. Let 1~,12, ..., I,, be a collection of closed three-manifolds.Then
thereexistsapin-Lorentzcobordism,M (ofsignature(— + + + )), for {I~: i =

1, ..., n} if andonly if thefollowingholds:

(u(8M) + kink(&M;ga~)) mod 2 = 0 ~ wj~‘— w~= 0

Proof Supposesuchapin-Lorentzcobordism,M, exists.Theneq. (24) holds.
Combiningthiswith eq. (21) we get

(u(3M) + kink(0M;ga~))mod 2 = 0 ~ ~— = 0
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The converseis alsoimmediate.

We interprettheorem12 in thefollowing subcasesandexamples(all ofwhich
dealwith signature(— + + +).

(theenumi)First of all, supposethat we want our cobordismto be both
spaceandtime-orientable.Thenwe musthavew~= 0 andw~= 0, andso
w~~— w~= 0. Thus, sucha cobordismexistsif andonly if

(u(3M) + kink(3M;g~~))mod2=0.

(theenumi)Similarly, if weinsist thatourcobordismbeneitherspacenor
time-orientable,then we havew~= 1 = w~and so ~ w~ 1. Thus,
sucha cobordismexistsif andonly if

(u(3M) + kink(0M;g~6)) mod 2

(theenumi)Now, however,supposethatwewantourcobordismto betime-
orientablebut not space-orientable,i.e., toj = 0 but w~ 1. Thenwe runinto
varioussubtletieswhich arecausedby the definition of the cupproduct,~—. To
understandthis, let us recallhow the cupproductis definedsimplicially.

First, supposethat a1,b1 aretwo 1-cochains;thentheir cupproductis a 2-
cochainwhichmaybedefinedby its actionon a singularsimplexS: T

2 —* M.
That is, S is a mapwhich imbedsthe convexset

{a
1,a2,a3E ~Iat >0, a1 + a2 + a3 = 1} = T

2 c
into M (i.e.,atetrahedronis determinedby the origin plus threelinearly inde-
pendentpointsa

1,a2, anda3 in ~

Next, let f(a1,a2,a3) = (a1,a2,0) denote the “front 1-face of T
2” (i.e.,

(a
1,a2,0)is the triangle formed by 0,a1, and a2) and let b(a1,a2,a3) = (0,

a2, a3) denotethe “back 1-faceof T
2” (i.e., (0,a

2,a3) is the triangleformedby
0, a2,anda3). ThenS o f is theimbeddedfront 1-faceofS(T

2) andS o b is the
imbeddedback1-face.Thus,it makessenseto definethe cupproduct,a

1 ‘S—’ b1,
of a1 andb1 by the identity

a1 ~-~b1[SJ= (a1[Sof]). (b1[Sob]) El2,

that is, we calculatethe valueof the 1-cochaina1 on the 1-cycle S o f, andwe
multiply it (in Z2) by thevaluethat the 1-cochainb1 giveson S o b. This gives
usanumberin Z2.

Now, the problemthat arisesis the following: It may be (in the abovede-
scribedsetting)thatanytwo-cycle,c E H2 (M; 12), satisfiesthefollowing prop-
erty (property[P1):

No matterhowwe deformc (via a continuousdeformation),it is alwaysthe
casethat the “front 1-face”, c1, andthe “back 1-face”, c~,satisfy

~— w~[c] = (Wj~[c1]) . (tot [ct]) = 1 . 0 = 0
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That is, it may be that we can haveacobordismM which is time-orientable
(w1 = 0),isnotspace-orientable(w~= l),andyetsti11satisfiesw~~ =

0!
In fact, this situation doesoccur,as seenin the following

Example 13.Let K denotethe two-dimensionalKlein bottle, and T
2 denote

the two-dimensionaltorus.Then we canform a spacetimeM K x T2. Re-
move adisk from M to obtain a spacetimeM’ = M — D4, 3M’ = ~ Then
kink(0M’;g~~)= 1. But u(ÔM’) = 1,andso

(u(OM’) + kink(3M’;ga~))mod 2 = 0.

Now, we can always choosethe Lorentz metric on M’ so that M’ is time-
orientablebut not space-orientable(signature(— + + +), i.e., the non-space
orientabilitycomesfrom the “K” part of M’), andsoM’ admitspin-Lorentz
structureifandonlywj~~—w~= 0,i.e.,iffforany2-cycle,c,wj4‘—~wj~[c] = 0.
However,K itself (viewedas asmoothlyembedded2-manifoldin M’) is evi-
dentlya 2-cycle (satisfyingw~~ w~[K] = 0), and so M’ admits (global)
pin-Lorentzstructure,eventhoughwt = 1.

Thus,we seethatwecanhaveanykink numberin the casew~= 1, w~= 0
dependingon the topology of the cobordism,M. This is summedup in the
following

Corollary 14.Let 11,12,..., I,, be a collection of closed three-manifolds.Then
thereexistsapin-Lorentzcobordism,M (signature(— + + + )), with w~(M) = 1
andwj(M) = Oif and only if

(u(OM) + kink(i9M;gab))mod2
— f 0, if any 2-cycle, c, satisfies Property [PJ

— ~ 1, otherwise

(theenumi)Finally, supposewe insist that our cobordism,M, be space-
orientablebut not time-orientable.Thenw~= 0 andw~= 1, andsowj~~
= 0 regardlessof whetheror not thereis a two-cycle in M satisfyingProperty
[P]. Thus, sucha cobordismexistsif andonly if

(u(0M) + kink(0M;g~~))mod2 = 0.

This exhaustsall of the possibilitiesfor signature(— + + +).

Case2 (signature(+ — — —)). In this case,wesee [16] thattheorem 12 is still
“true”; that is, it is still the casethat thereexistsa pin-Lorentzcobordism,M
(signature(+ — ——)), for {1~: i = l,...,n} if andonly ifthe following holds:

(u(OM) + kink(0M;g~
6))mod2=0 ~ w-~w~=0
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1=-i three-sphere t=+1 three-sphere

Fig. 2. Identify antipodally.

The differencenow is thatw~refersto the timelikeorientation.Thus,we get
the sameresultsin Case2 as we did in Case 1, only with the valuesof w~and
w~ interchanged.

We concludewith

Example 15 (Gibbons).S3 x [0, 11/12.Here, slice de Sitter spacetime(+ —

— —) with two spacelikeslices at times t = +1, and identify the resulting
three-spheresantipodally.Onethenobtainsa space,M, which is topologically

x [0, 1] /Z
2, asshownin fig. 2 Clearly,thenM is aspace-orientablespacetime

which is not time-orientableandhas3M ~ S
3spacelike(kink(3M; gab) = 0).

Hence,M haspin-Lorentzstructure(sinceit hasno 2-cyclessatisfyingProperty
[P1) andsoM is the standardexampleof the “creationof a spacelike53 from
nothing” spacetime(for signature(+ — ——)),which weshallencounterbelow.

6. Applications of the obstructions

We are interestedin seeingwhat restrictionsour invariantsplace on theho-
motopytypeof the metric in standardspacetimeexampleswhich are frequently
encountered.

Let us first considerspin-Lorentzstructure.Thenone of the first examples
thatspringsto mindis the “creationfrom nothinguniverse”,whichis visualised
in fig. 3.

Here,M is a compactspin-Lorentzmanifoldwith singleboundarycomponent
I, which is to be interpretedas a “three-surfaceof simultaneity”with respect
to someuniversaltime indexedby a Morse function f : M —* ~ (so that
f~ (x) I, for somex E 11).

IfI ~ S3,wehave

u(3M) = dim
12(H0(S

31
2)e H1(S

3Z
2)) mod 2 = I =~
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Boun~aryof M

Fig. 3.

in order to have

(u(3M) + kink(1;gab))mod 2 = 0

wemusthave
kink(1;g~6)= 1 mod 2

Thus, if the topology of our perceivedthree-surfaceof simultaneityI is 53,
thenthe metric ge,, musthavenon-trivial homotopytypewith respectto I (in
particular,theremustexistan oddnumberof kink regionsof ~ab with respect
to I).

On the otherhand,if I ~ 5’ x ~2, then

u(I) = 0,

and so we canhaveacreationfrom nothinguniversewith kink(I; gab) = 0,
as long as I ~ ~1 x ~2• If welive in an expandinguniverse,with global spin-
Lorentz structure,andourperceivedthree-surfaceof simultaneityI is every-
wherespacelike(no kinking), thenwe musthaveI ~ ~1 x S

2,RP3,or some
otherthree-manifoldsatisfying

u(I) = 0.

Anotherexamplearises when one considersthe creationof a single “time
machine” [5], in the senseof Thorneand co-workers.Explicitly, Thorne et
a!. speculatethat an “advanced” civilization may somedaybe able to create
aspacetimewormhole (with spaceliketopology S’ x 52) by “pulling” sucha
wormhole out of the quantum foam. Thus, assumingthat the initial topology
(spacelike)of the universeis 53, weareconcernedwith whatourinvarianttells
usaboutthehomotopytypeof ~abwith respectto S~x ~2 (the“final” topology).
Writing

f I ~
~I~~ 51 x 52
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we areconcernedwith the spin-Lorentzcobordism,M, for I, andIi,-. Since

u(0M) = u(11 U If) = 1

we seethat we musthave

kink(dM) = 1 mod2.

Thus, the metric musthavenon-trivial homotopyon the wormhole1~-,as-
suming1~was spacelike.

Now let us considerpin-Lorentz structure.Then one of the first things we
noticeis that we canhavea creationfrom nothinguniverse,M, with 3M ~ S

3
andkink(0M;g~~)= 0. In otherwords, if the signatureis (— + ++) then
thereexist compactpin-Lorentzmanifolds, which are either (i) neitherspace
nor time-onentable,or are (ii) time-orientablebut not space-orientable,and
which havea singlespacelikeboundarycomponenthomeomorphicto ~

Likewise, if the signatureis (+ — — —) thenthereexistcompactpin-Lorentz
manifolds, which are either (i) neitherspacenor time-orientable,or are (ii)
space-orientablebutnot time-orientable,andwhichhaveasingleboundarycom-
ponenthomeomorphicto 53~

Finally, let us again considerthe “time machine” situationof Thorne and
co-workers, i.e., 3M ~ 53 U (51 ~ S2). Then we see that we can now have
pin-Lorentzspacetimesfor which both the initial slice,I~~ S3,and the final
slice, 1~~ 5’! x S2 arespacelike.This is outlined as follows:

If the signature is (— + + +) then there exist compact pin-Lorentzman-
ifolds M, which are either (i) neither spacenor time-orientable,or are (ii)
time-orientablebut not space-orientable,andwhich haveeverywherespacelike
boundaries3M

1 ~ U (S’ x S
2).

Following the aboveexample,a similar statementholds for the casewith
signature(+ — — —).

We concludewith a discussionon kinking andcausality.

7. Kinking and causality

SupposeM is a compactspacetimewith

3M~I
1UI2U...U1~~ 0.

Recently,therehasbeensomesuspicionthattheremaybe a relationbetween
the topologyof 3M, alongwith the value of kink(0M; gab), andthe existence
of closedtimelike curves (CTCs) in M. In particular,it was conjectured[17]
that if 3M ~ 53 andkink(3M;g~~)= 0, thentheremustexistCTCsin M.

In recentwork [18] with RogerPenrose,we managedto show the above
conjectureto be false(by counterexample);in factwe provedthe moregeneral
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Theorem 16. Let I~,12, ...,
1n beanycollectionofclosed,orientablethree-mani-

folds, n e Z an arbitrary integer. Thenthere existsa compactcausalspacetime
M with 3M ~ I~ U 12 U •.. U I~andkink(3M; V) = n, where v is a time/ike
vector field.

Theorem 17. If Mis compact and causality violating, with 3M ~ Ij U I~U~. U

~ 0, then there exists a continuous deformation of the metric on Msuch that
the new spacetime with deformed metric does not possess CTCs.

Proof of theorem 16. Let 11,12,..., I,, be any collection of closed,orientable
three-manifolds,n E 1 any integer.Thenwecan alwaysfind a Lorentzmanifold
M (with metric~ab andtimelike vectorV) suchthat3M ~ I~ U 12 U ... U I~
andkink (3M; V) = n. This follows from the generalformula (6):

e(M) = ~ i~—kink(3M;V)

Now, wecan coverM with a finite numberof setsB~of theform

B~,= {x E 1~(ps) fl I~(q) j q E 1~(p~)}

Furthermore[191,we cantakethe setsin thisfinite coverto befineenoughthat
theyareall locally causal(i.e., no CTClies entirely in anyoneof the B~,s).

Now, the crucial ideaof the constructiondependsuponourability to cut all
of the CTCsby removinga finite numberof four-balls.That we cando this is
reasonablyintuitively obvious,but wejustify this constructionmorerigorously
as follows.

Begin by successivelyremovingthe “t = 0” Cauchysurface,C, from eachof
ourlocallycausalcoveringsetsBr,, as shownin fig. 4. Now, ateachstageC, may
alreadybe intersectedby a previouslyremovedpart (assumedto be a union of
three-disks),R_

1,sosubdivideto get a covering of what is left by three-disks,
(D

3s), as shownin fig. 5. Next, modify C, accordingto the two rulesshownin
fig. 6. Adjoin the resultto R_

1 to get R,which is thusgivenas adisjoint union
of three-balls,D~,as shownin fig. 7. Finally, thickenout theD~sto get disjoint
four-ballsB~~swhich clearlycut the CTCs.

Hence,we cancut all of the CTCswith a finite numberof suchfour-balls.
We now connecteachof theselittle removedfour-ballsto the “old” boundary

of M, 3M, via little tubesT~~ D
3 x [0, 1]; that is, we cut out a little tube

leadingfrom somecomponentof the “old” boundaryof M to the newboundary
componentformedby removinga ~ as shownin fig. 8

Cal! the new manifold obtainedafter sucha finite sequenceof operationsN.
Thenclearly

3N~3M~I,UI
2u~.U1~

sinceall we did to obtainN waspusha lot of “dimples” into the boundaryof
M (theboundary3N is a continuousdeformationof 3M).
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localty causalcoveringset

‘V

t=O Cauchysurface (remove)

Fig. 4. The Cauchysurfacewe removeis homeomorphicto anopenthree-disk.

Sideview Views from ‘above

Darklines arethe
intersectionsof

C andR

1 1 i-I/
Side view ofthe locally causalcovering

setbeingintersectedby apreviously
removedregion R

t—I

Cutupwhat’sleftinto —~

regionshouseomorphicto

three-disks

/
Fig. 5.
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Rule 1: Rule 2:

Replace Replace OOndS to

with with

CTCs can’tget through
CTCs can’t getthrough

Fig. 6.

Fig. 7. R is the disjoint union of all the removedthree-disks.
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Otd boundarycomponent New boundarycomponent(formed by removing

afour-disk) j

/
little tube,winchweremoveto tinkold

boundarycomponentto newboundary
component(so that thetotalnewboundary
is justacontinuousdeformationof the

originalone)

Fig. 8.

Furthermore, V (andhencegab) is still global and non-vanishing on N, i.e.,

~i~v = 0. Thus,kink(3N;V) = n. Thus, N is acausalspacetimewith 0N ~
I~U 12 U U I~andkink(3N; gab) = n, and the theorem is proved. ~

To prove theorem17,we continuouslyretract0N backto 3M (via a homo-
topy) and“pull” themetric with the retraction(via theisotopywhichlifts from
the homotopy).

In closing, we note that Dr. R.P.A.C.Newmanhasstrengthenedthe above
proof of theorem 16 by continuouslyretracting3M all the way back to the
skeletonof M. In this way, he is able to usefewer intuitive diagrams(andmore
theorems)to provethe result.

8. Conclusion

In closing, we point out someinterestingquestionswhich emergefrom this
work.

First, as was shownin [1], theobstructionsto spin-Lorentzandpin-Lorentz
structurescanbe interpretedphysicallyas kinematicalobstructionsto the cre-
ationofcertaintypesof“time machines”.Arethereanyotherkinematicalaspects
of physicallaw which onemight alsohopeto apply to the questionof thetheo-
retical possibilityof time travel (i.e., the ChronologyProtectionConjecture)?

Second,doesthereexistanygeneralrelationshipbetwenkinking andgeodesic
incompleteness?Forexample,asphericallysymmetric(asymptoticallyflat) kink
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regionhasincompletenull geodesicscorrespondingto therootsof g00 [20]. Can
onedevelopa genera!statementwhich tells us “which” typesof kinking with
respectto “which” typesof three-surfaces(in either compactor non-compact
spacetimes)inevitably leadto geodesicincompleteness?

The authorwould like to thankhis advisor,Dr. G.W. Gibbons,Prof. S.W.
Hawking, Prof. R. Penrose,Dr. R.P.A.C.NewmanandDr. L. Dabrowskifor
helpful comments,ideas, andcriticisms during the compilationof this work.
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